정상적인 샘플과 비정상적인 샘플을 나누는 비슷한 작업이지만 굳이 나누자면, 조금은 다르다. (참고자료의 사이킷런 공식 문서를 확인하면 다양한 예시 확인 가능) Novelty Detection 훈련 데이터셋에 있는 모든 샘플과 달라 보이는 새로운 샘플을 탐지하는 것이 목적이다. (훈련 데이터에 포함된 샘플은 특이치로 생각하지 않는다.) 즉, Training data가 특이치 데이터를 포함되지 않은 채 학습하고 (사이킷런의 문서에서는 오염되지 않았다고 표현), 예측시 새로운 관측치인지 확인한다. 따라서 알고리즘으로 감지하고 싶은 샘플들을 제거한 훈련 데이터셋이 필요하다. Outlier Detection 훈련 데이터셋에 정상 샘플과 이상치 샘플을 모두 포함하고 있다. ( 대부분 정상 샘플 ) 즉, Traini..