전 포스팅에서 신경망 학습과 손실 함수에 대해 알아봤습니다. 이번에는 미니배치, 수치 미분, 기울기에 대해 다뤄보겠습니다. 이 전의 포스팅과 같이 구현과 관련된 내용은 제 깃허브 링크를 참고해주시기 바랍니다. https://github.com/Kingnamji/BigAI/blob/main/%EB%B0%91%EC%8B%9C%EB%94%A51_re/04_NNTrain.ipynb 미니배치 신경망의 학습은 훈련데이터로부터 이뤄진다고 했습니다. 학습동안 훈련데이터에 대한 손실 함수의 값을 구하고, 그 값을 최대한 줄여주는 매개변수를 찾습니다. ( 이 내용은 https://kingnamji.tistory.com/18 에서 다뤘습니다. ) MNIST 데이터셋의 경우 훈련 데이터의 갯수가 60,000개 입니다. 이렇게..