퍼셉트론에서는 가중치 값 (예시에서 $w1, w2, b$) 를 직접 설정했습니다. 반면에 신경망(인공 신경망이라고도 부름)에서는 가중치 매개변수의 적절한 값을 데이터로부터 '학습'해서 정합니다. 신경망 신경망의 구조는 아래와 같습니다. Input Layer - Hidden Layer - Output Layer ( 입력층 - 은닉층 - 출력층 ) 앞서 봤던 퍼셉트론의 구조와 비슷합니다. 퍼셉트론을 다시 수식으로 한번 표현해보겠습니다. $y = \begin{pmatrix}0\;(b + w1x1 + w2x2 \leq 0 )\\1\;(b + w1x1 + w2x2 > 0)\end{pmatrix}$ (b는 편향 w1, w2는 가중치) 이때 함수 $h$ 를 $h(x) = \begin{pmatrix}0\;(x \leq..